Publication highlights

Publications

  • A dynamical model of C. elegans thermal preference reveals independent excitatory and inhibitory learning pathways.

    Roman A, Palanski K, Nemenman I, Ryu WS. Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2215191120. doi: 10.1073/pnas.2215191120. Epub 2023 Mar 20. PMID: 36940330.

  • Small Molecule Inhibitors of α-synuclein Oligomers Identified by Targeting Early Dopamine-Mediated Motor Impairment in C. elegans

    Chen KS, Menezes K, Rodgers JB, O'Hara DM, Tran N, Fujisawa K, Ishikura S, Khodaei S, Chau H, Cranston A, Kapadia M, Pawar G, Ping S, Krizus A, Lacoste A, Spangler S, Visanji NP, Marras C, Majbour NK, El-Agnaf OMA, Lozano AM, Culotti J, Suo S, Ryu WS, Kalia SK, Kalia LV. Mol Neurodegener. 2021 Nov 12;16(1):77. doi: 10.1186/s13024-021-00497-6. PMID: 34772429; PMCID: PMC8588601.

  • Targeted Thermal Stimulation and High-Content Phenotyping Reveal That the C. elegans Escape Response Integrates Current Behavioral State and Past Experience.

    Byrne Rodgers J, Ryu WS. PLoS One. 2020 Mar 27;15(3):e0229399. doi: 10.1371/journal.pone.0229399. PMID: 32218560; PMCID: PMC7100941.

  • Neuro-Genetic Plasticity of Caenorhabditis Elegans Behavioral Thermal Tolerance.

    Stegeman GW, Medina D, Cutter AD, Ryu WS. BMC Neurosci. 2019 Jun 10;20(1):26.

  • Genetically Distinct Behavioral Modules Underlie Natural Variation in Thermal Performance Curves.

    Stegeman GW, Baird SE, Ryu WS, Cutter AD. G3 (Bethesda). 2019 May 2. pii: g3.400043.2019. doi: 10.1534/g3.119.400043.

  • Automated, Predictive, and Interpretable Inference of Caenorhabditis elegans Escape Dynamics.

    Daniels BC, Ryu WS, Nemenman I. Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7226-7231. doi: 10.1073/pnas.1816531116.

  • Mechanism of Bidirectional Thermotaxis in Escherichia coli.

    Paulick A, Jakovljevic V, Zhang S, Erickstad M, Groisman A, Meir Y, Ryu WS, Wingreen NS, Sourjik V. Elife. 2017 Aug 3;6. pii: e26607. doi: 10.7554/eLife.26607.

  • Stereotypical Escape Behavior in Caenorhabditis elegans Allows Quantification of Effective Heat Stimulus Level.

    Leung K, Mohammadi A, Ryu WS, Nemenman I. PLoS Comput Biol. 2016 Dec 27;12(12):e1005262. doi: 10.1371/journal.pcbi.1005262. eCollection 2016 Dec.

  • Pan-Neuronal Screening in Caenorhabditis elegans Reveals Asymmetric Dynamics of AWC Neurons is Critical for Thermal Avoidance Behavior.

    Kotera I, Tran HA, Kim JH, Byrne Rodgers J, Ryu WS. Elife. 2016 Nov 16;5. pii: e19021. doi: 10.7554/eLife.19021.

  • Foraging Success Under Uncertainty: Search Tradeoffs and Optimal Space Use.

    Bartumeus F, Campos D, Ryu WS, Lloret-Cabot R, Méndez V, Catalan J. Ecol Lett. 2016 Nov;19(11):1299-1313. doi: 10.1111/ele.12660.

  • Resolving Coiled Shapes Reveals New Reorientation Behaviors in C. elegans.

    Broekmans OD, Rodgers JB, Ryu WS, Stephens GJ. Elife. 2016 Sep 20;5. pii: e17227.

  • Tracking the Startle Response of Guppies (Poecilia reticulata) in Three Dimensions

    Vanesyan A, Rodd H, Ryu WS. J Fish Biol. 2015 Oct;87(4):981-99.

  • Genetics of Intra-Species Variation in Avoidance Behavior Induced by a Thermal Stimulus in Caenorhabditis elegans,.

    Ghosh R, Bloom JS, Mohammadi A, Schumer ME, Andolfatto P, Ryu WS, Kruglyak L. Genetics. June 19, 2015, doi:10.1534/genetics.115.178491

  • The Nematode C. elegans as a Complex Viscoelastic Fluid.

    Backholm M, Ryu WS, Dalnoki-Veress K. T. Eur. Phys. J. E 2015, 38.

  • Direct Measurements of Drag Forces in C. elegans Crawling Locomotion.

    Rabets Y, Backholm M, Dalnoki-Veress K, Ryu WS. Biophys J. 2014 Oct 21;107(8):1980-7.

  • Tangling of Tethered Swimmers: Interactions Between Two Nematodes.

    Backholm M, Schulman RD, Ryu WS, Dalnoki-Veress K. Phys. Rev. Lett. 2014, 113: 138101

  • Undulatory Microswimming Near Solid Boundaries.

    Schulman RD, Backholm M, Ryu WS, Dalnoki-Veress K. Phys. Fluids 2014, 26: 101902.

  • Dynamic Force Patterns of an Undulatory Microswimmer.

    Schulman RD, Backholm M, Ryu WS, Dalnoki-Veress K. Phys Rev E. 2014 May;89(5):050701.

  • Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm.

    Backholm M, Ryu WS, Dalnoki-Veress K. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4528-33.

  • Mechanistic Analysis of the Search Behaviour of Caenorhabditis elegans.

    Salvador LC, Bartumeus F, Levin SA, Ryu WS. J R Soc Interface. 2014 Jan 15;11(92):20131092. doi:10.1098/rsif.2013.1092.

  • Behavioral Response of Caenorhabditis elegans to Localized Thermal Stimuli.

    Mohammadi A, Byrne Rodgers J, Kotera I, Ryu WS. BMC Neuroscience 2013 14:66. doi:10.1186/1471-2202-14-66.

  • The Viscoelastic Properties of the Nematode C. elegans, a Self-Similar, Shear-Thinning Worm.

    Backholm M, Ryu WS, Dalnoki-Veress K. PNAS 2013, Mar 19;110(12):4528-33.

  • Multiparameter Behavioral Profiling Reveals Distinct Thermal Response Regimes in Caenorhabditis elegans.

    Ghosh R, Mohammadi A, Kruglyak L, Ryu WS. BMC Biol. 2012 Oct 31;10(1):85. PubMed PMID: 23114012.

  • C. elegans Tracking and Behavioral Measurement.

    Likitlersuang J, Stephens G, Palanski K, Ryu WS. J Vis Exp. 2012 Nov 17;(69):e4094. doi: 10.3791/4094. PubMed PMID: 23183548.

  • Temperature-Dependent Behaviours are Genetically Variable in the Nematode Caenorhabditis briggsae.

    Stegeman GW, Bueno de Mesquita M, Ryu WS, Cutter AD. J Exp Biol. 2013 Mar 1;216(Pt 5):850-8. PubMed PMID: 23155083

  • An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion.

    Taizo Kawano, Michelle D. Po, George Leung, Magali Bourhours, William S. Ryu and Mei Zhen. Neuron. 2011 Nov 17;72(4):572-86.

  • Thermal Robustness of Signaling in Bacterial Chemotaxis,

    Oleksiuk O, Jakovljevic V, Vladimirov N, Carvalho R, Paster E, Ryu WS, Meir Y, Wingreen NS, Kollmann M, Sourjik V. Cell (2011), 145:312-321.

  • The Emergence of Long Time scales and stereotyped behaviors in Caenorhabditis elegans. elegans.

    Stephens GJ, Matt Bueno de Mesquita, Ryu WS, Bialek W. PNAS 2011, 108(18):7286-9.

  • From Modes to Movement in the Behavior of C. elegans.

    Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. PLoS ONE 5(11) 2010: e13914. doi:10.1371/journal.pone.0013914

  • Upconverting Nanophosphors for Bioimaging.

    Lim SF, Riehn R, Tung C, Ryu WS, Zhua R, Dalland J, Austin RH. Nanotechnology 2009; 20 405701 (6pp) doi: 10.1088/0957-4484/20/40/405701

  • Enhanced Locomotion of Caenorhabditis elegans in Structured Microfluidic Environments.

    Park S, Hwang H, Martinez F, Austin RH, and Ryu WS. PLoS ONE. 2008; 3(6): e2550.

  • Thermal Impulse Response of Escherichia coli.

    Paster E, and Ryu WS. Proc Natl Acad Sci USA 2008; 83:8987-8991

  • Dimensionality and Dynamics in the Behavior of C. elegans.

    Stephens GJ, Bialek W, and Ryu WS. PLoS Comput Biol 2008; 4(4): e1000028.

  • A Comprehensive Genetic Characterization of Bacterial Motility.

    Girgis H, Liu Y, Ryu WS, Tavazoie S. PLoS Genet 2007; 3(9): 1644-60.

  • In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans.

    Lim SF, Riehn R, Ryu WS, Khanarian N, Tung C, Tank D, and Austin RH. Nano Lett. 2006; 6(2): 169-174.

  • The Effects of Linear and Quadratic Drag on Falling Spheres: an Undergraduate Laboratory.

    Owen JP and Ryu WS. Eur. J. Phys. 2005; 26: 1085-1091.

  • The CMK-1 CaMKI and the TAX-4 Cyclic Nucleotide-Gated Channel Regulate Thermosensory Neuron Gene Expression and Function in C. elegans.

    Slatterlee JS, Ryu WS and Sengupta P. Curr Biol. 2004; 14(1): 62-68.

  • Bacterial Flagellar Switching Under Load.

    Fahrner KA, Ryu WS and Berg HC. Nature 2003; 423: 938.

  • Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli.

    Ryu WS and Samuel ADT. J Neurosci. 2002; 22: 5727-33.

  • Force and Velocity of Mycoplasma Mobile gliding.

    Miyata M, Ryu WS and Berg HC. J. Bacteriol. 2002; 184: 1827-1831.

  • Real-time Imaging of Fluorescent Flagellar Filaments.

    Turner L, Ryu WS and Berg HC. J. Bacteriol. 2000; 182: 2793-2801.

  • Torque-generating Units of the Flagellar Motor of Escherichia coli Have a High Duty Ratio.

    Ryu WS, Berry RM and Berg HC. Nature 2000; 403: 444-447.

  • Tumbling Cards.

    Mahadevan L, Ryu WS and Samuel ADT. Physics of Fluids 1999; 11: 1-3.

  • Flagellar Determinants of Bacterial Sensitivity to Chi-phage.

    Samuel ADT, Pitta TP, Ryu WS, Danase PD, Leung ECW and Berg HC. Proc. Nat. Acad. Sci. USA 1999; 96: 9863-9866.

  • Fluid 'Rope Trick' Investigated.

    Mahadevan L, Ryu WS and Samuel ADT. Nature 1998; 392: 140.